首页> 外文OA文献 >Content-based music recommendation using underlying music preference structure
【2h】

Content-based music recommendation using underlying music preference structure

机译:使用基础音乐偏好结构的基于内容的音乐推荐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The cold start problem for new users or items is a great challenge for recommender systems. New items can be positioned within the existing items using a similarity metric to estimate their ratings. However, the calculation of similarity varies by domain and available resources. In this paper, we propose a content-based music recommender system which is based on a set of attributes derived from psychological studies of music preference. These five attributes, namely, Mellow, Unpretentious, Sophisticated, Intense and Contemporary (emph{MUSIC}), better describe the underlying factors of music preference compared to music genre. Using 249 songs and hundreds of ratings and attribute scores, we first develop an acoustic content-based attribute detection using auditory modulation features and a regression by sparse representation. We then use the estimated attributes in a cold start recommendation scenario. The proposed content-based recommendation significantly outperforms genre-based and user-based recommendation based on the root-mean-square error. The results demonstrate the effectiveness of these attributes in music preference estimation. Such methods will increase the chance of less popular but interesting songs in the long tail to be listened to.
机译:对于新用户或项目的冷启动问题对于推荐系统是一个巨大的挑战。可以使用相似性度量将新项目放置在现有项目中,以估计其等级。但是,相似度的计算因域和可用资源而异。在本文中,我们提出了一种基于内容的音乐推荐器系统,该系统基于从音乐偏好心理研究得出的一组属性。与音乐流派相比,这五个属性,即柔和,朴实,精致,强烈和现代(emph {MUSIC}),可以更好地描述音乐偏好的潜在因素。我们首先使用249首歌曲以及数百种评分和属性得分,开发一种基于听觉内容的属性检测,该方法使用听觉调制功能和稀疏表示的回归。然后,我们在冷启动推荐方案中使用估计的属性。所提出的基于内容的推荐明显优于基于均方根误差的基于体裁和基于用户的推荐。结果证明了这些属性在音乐偏好估计中的有效性。这样的方法将增加长尾巴中不太受欢迎但有趣的歌曲被听的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号